Entrainment rates and microphysics in POST stratocumulus

Received 12 February 2013; revised 2 August 2013; accepted 30 September 2013.

An aircraft field study (POST; Physics of Stratocumulus Top) was conducted off the central California coast in July and August 2008 to deal with the known difficulty of measuring entrainment rates in the radiatively important stratocumulus (Sc) prevalent in that area. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter research aircraft flew 15 quasi-Lagrangian flights in unbroken Sc and carried a full complement of probes including three high-data-rate probes: ultrafast temperature probe, particulate volume monitor probe, and gust probe. The probes’ colocation near the nose of the Twin Otter permitted estimation of entrainment fluxes and rates with an in-cloud resolution of 1 m. Results include the following: Application of the conditional sampling variation of classical mixed layer theory for calculating the entrainment rate into cloud top for POST flights is shown to be inadequate for most of the Sc. Estimated rates resemble previous results after theory is modified to take into account both entrainment and evaporation at cloud top given the strong wind shear and mixing at cloud top. Entrainment rates show a tendency to decrease for large shear values, and the largest rates are for the smallest temperature jumps across the inversion. Measurements indirectly suggest that entrained parcels are primarily cooled by infrared flux divergence rather than cooling from droplet evaporation, while detrainment at cloud top causes droplet evaporation and cooling in the entrainment interface layer above cloud top.

1. Introduction

Large sheets of stratocumulus clouds (Sc) along western margins of continents and under subtropical high-pressure regions strongly affect the radiation balance of the globe by reflecting visible solar radiation. It is thus necessary to understand the behavior of these Sc and to be able to predict their evolution in the future. An important physical process that can affect Sc dissipation is thought to be subsiding warm and dry air from above the mixed boundary layer that enters Sc cloud top causing cloud water to evaporate. This process is termed cloud top entrainment which has been the subject of numerous field studies of Sc off the western coasts of the American continents including the Marine Stratocumulus Experiment (MSE) [Wakefield and Schubert, 1976; Gerber, 1986], First International Satellite Cloud Climatology Project Regional Experiment (FIRE) [Albrecht et al., 1988], Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) [Lenschow et al., 1988], East Pacific Investigation of Climate [Bretherton et al., 2004], DYCOMS II [Stevens et al., 2003a], and VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS) [Wood et al., 2011]. A comprehensive review of Sc research is given by Wood [2012].

In July and August 2008, another aircraft field study, POST (Physics of Stratocumulus Top) [Gerber et al., 2010], used 17 flights off the California (CA) coast to again analyze entrainment in maritime Sc. POST was patterned after the DYCOMS II aircraft study [Stevens et al., 2003a] conducted 7 years earlier that also focused on entrainment in unbroken Sc off the CA coast. Both studies dealt with our continuing inability to adequately measure and model entrainment; and both studies had goals to accurately measure entrainment velocity (w_e) into cloud top and use w_e as baseline data for comparison with model predictions. The desire to again study CA Sc during POST is a result of our learning from DYCOMS II that dimensions of entrainment parcels (also called “cloud holes”) [Korolev and Mazin,
[5] POST had the unique opportunity to investigate the vertical structure on either side of unbroken Sc top in unprecedented detail. This was possible by utilizing the CIRPAS (Center for Interdisciplinary Remotely-Piloted Aircraft Studies) Twin Otter (TO) research aircraft where probes pertinent to the entrainment process were mounted close to each other. This included the UFT-M (ultrafast temperature probe [Kumula et al., 2013]; UFT-M is a modified version of the UFT described by Haman et al. [2001, 2007]) capable of 1000 Hz temperature (T) measurements in and out of cloud, the PVM (particle volume monitor) [Gerber et al., 1994] also capable of 1000 Hz measurements of liquid water content (LWC) and droplet effective radius (Re), and several probes for measuring the water vapor mixing ratio (qv). Given the TO speed of ~50 m/s during cloud flights and the UFT-M and PVM ~0.5 m separation on the TO suggests that useful correlations between the UFT-M, PVM, and gust probe can be found at a 50 Hz rate corresponding to a horizontal in-cloud resolution of ~1 m. For a description of TO flights, flight scientist reports, and source of data, see the POST Web site at http://www.eol.ucar.edu/projects/post/. A list of TO instrumentation and their flight performance during POST are given in http://www.gerberscience.com/POSTdata/POSTdata.html.

[6] The high-resolution LWC measurements in POST flights make it possible as in Gerber et al. [2005] to use a “flux-jump” approach with “conditional sampling” to pick out cloud holes caused by entrainment near cloud top and to use the combination of LWC, T, and qv data and the jump in the value of the scalar qv (total water mixing ratio) across the inversion above cloud top to estimate entrainment fluxes and we. In the following, the inversion is given the alternate name EIL (entrainment interface layer; first observed and named using tethered balloons in continental Sc by Chaughey et al. [1982] and Roach et al. [1982] and in maritime Sc by Gerber [1986], and by Lenschow et al. [2000] in horizontal aircraft flight near Sc top).

[7] The we estimates also provide the opportunity to test three conditions thought to be necessary in classical mixed layer theory for applying the flux-jump approach to Sc using qv as the scalar conserved during entrainment: Entrainment flux is linear with height below Sc top, entrained parcels are negatively buoyant and descend in Sc, and the jump in the value of qv above Sc top is large and occurs over a thin layer.

[8] The high-resolution data further make it possible to investigate in detail individual cloud holes to clarify existing questions dealing with cooling contributions from LWC evaporation and IR flux divergence, with heating due to mixing with warmer air from above cloud top, with buoyancy reversal, with the relationship between entrained parcel scales and entrainment rates, and with the mixing mechanism following entrainment.

[9] The paper is organized into four sections. Section 2 includes a description of the TO instrumentation and of the aircraft flight patterns during the Sc missions and tabulates
data collected on each flight. Section 3 explains the method used for calculating entrainment velocities for all flights and analyzes in greater detail three off the flights. Section 4 looks at microphysics of the entrainment process including assessing the cooling effect at cloud top. Section 5 gives conclusions and makes recommendations for additional Sc research.

2. Observations

2.1. Instrumentation

Instrumentation primarily dealt with in this study is located near the nose of the TO shown in the photo and dimensional sketch in Figure 1. Probes mounted on a hard-point ring near the gust probe on the nose include the UFT-M, PVM, and three probes for measuring \(q_v \). This study relies in cloud-free air on relatively slow rate \(q_v \) data of several hertz from the University of California, Irvine (UCI)-modified LI-COR 7500 Lyman-alpha probe [Khelif et al., 2005] since the fast cross-flow UCI Lyman-alpha probe failed early in the field program, and since the fast National Center for Atmospheric Research (NCAR) Lyman-alpha probe produced noisy data. The gust probe consists of five holes leading to pressure transducers that produce after-correction for aircraft motions ambient wind speed and wind fluctuations at a data rate of 40 Hz and 50 Hz [Khelif et al., 1999].

The TO also carried a full set of other instrumentation with a partial list including visible and IR radiometers mounted on the top and bottom of the fuselage for estimating radiation fluxes, Rosemount temperature probe, dewpoint hygrometer, particle and droplet spectrometers, cloud condensation nuclei counters, sea surface temperature probe, and GPS receiver for navigation and data time synchronization.

The latter was used to produce 0.5 Hz square wave pulses to synchronize data collected by multiple data loggers and computers on board the aircraft. For a full list of the instrumentation and a description of their performance, and for parameters generated by aircraft software, see the POST Web sites noted in section 1.

Satellite remote sensing data are also archived on the POST Web site under the headings POST Field Catalog and Operational Products. It includes GOES, MODIS, QuikSCAT, and NexSat data and retrievals including upper air soundings. Satellite images and retrievals proved to be important in flight mission planning and subsequent data analysis.

2.2. Twin Otter Flights

Each flight path of the 17 flights made by the TO originated from the airport in Marina, CA, located just north of Monterey on Monterey Bay. Except for flights TO4, TO9, and TO11, the TO proceeded WNW over the ocean to the vicinity of 123°10'W and 37°N, a distance of ~125 km from Marina. At that away point, the aircraft measurement of in-cloud wind velocity was used to start a horizontal quasi-Lagrangian zigzag pattern (termed QLP in the following; see Figure 2). The end of each line of the approximately E-W zigzag was ~20 km from the centerline of the pattern, and each E-W line had a horizontal slant in the windward direction depending on the air velocity in the Sc layer so that the average displacement of TO along the centerline matched the air velocity in the Sc. The nine daylight flights lasted from about 10:15 A.M. to 15:15 P.M. local time, and the eight nighttime flights lasted from about 18:00 P.M. to 23:00 P.M. local time. The flight duration of the QLP was ~3 h POST local time plus 7 h equals UTC time.

A typical vertical flight pattern flown by TO during the zigzag is shown in Figure 3. Most of the vertical pattern consisted of “porpoising” through Sc top. The pilot of the TO was asked to ascend 100 m above cloud top and then descent 100 m below cloud top during porpoising at a vertical rate of ~1.5 m s\(^{-1}\) resulting in slant profiles with a sawtooth pattern. Figure 3 shows four sets of such patterns
Gerber et al.: Entrainment Rates in Stratocumulus

for TO10 which are given the name “pods” (for a detailed description of pods for POST flights as well as analyses of their EIL, see Hill [2012]). Similar vertical patterns have been used in Sc by VanZanten and Duynkerke [2002], for a brief time during DYCOSM II, and by Katzwinkel et al. [2011]. The rationale for using this pattern during POST was to observe in detail structures above and below Sc top involved in the entrainment process. A total of about 900 passes was made through Sc top during the POST flights. Between each pod, the aircraft descended to just above the sea surface for horizontal flight over a total of ~80 km to estimate surface fluxes. Similar horizontal flight sections were made for most flights just below cloud base and in-cloud. At least one higher sounding was made for each flight.

2.3. Average Flight Properties

Table 1 lists POST flights, defines parameters measured on the TO, and lists parameter averages that relate to this study. Flights TO4 and TO11 are not included, because the former is made across the prevailing wind direction and the latter is flown in an area just filling with Sc. Some similar parameters from DYCOSM II Sc [Gerber et al., 2005] are added to Table 1. All POST parameters in Table 1 are averages of measurements from ~10 TO profiles through cloud top spaced apart approximately equally in time, except for z_i, z_o, dz/dt. The z_i parameters are averages for all penetration through Sc top, and z_o are averages from cloud base penetrations that numbered about six for each flight. The parameters, except for the noted exceptions, do not take advantage of the larger number of ~50 profiles made above cloud top for each flight, thus the parameters in Table 1 do not have the most accurate averages possible. All height values are from the TO radar altimeter. (For another listing of POST parameters and plots, see Wang [2009]).

Uncertainty exists in choosing the jump values listed in Table 1, which is consistent with earlier conclusions concerning the difficulty of choosing jumps above Sc [Siems et al., 1990; Shao et al., 1997; Wang and Albrecht, 1994; Moeng et al., 2005]. The difficulty for POST Sc comes from two effects: The shallow slant angle of the TO during porpoising, resulting from the aircraft speed of ~50 m s$^{-1}$ and an ascend/descend rate of ~1.5 m s$^{-1}$, causes the penetration of the top and bottom of the EIL to be separated horizontally ~1.5 km given a mean EIL thickness of $\Delta z = 45$ m. Jump estimates for individual ascends/descends are error prone because of the vertical variability of the Sc cloud top surface, so that jumps must rely on averages from multiple porpoises.

The second effect relates to choosing the height of the bottom and top of the EIL. Choosing the bottom requires an assumption because the shallow slant angle of the TO occasionally causes penetrations of cloud segments above the unbroken Sc. Here we define the bottom of the EIL and cloud top z_i as the height above which LWC < 0.01 g m$^{-3}$ and where cloud segments found more than 5 s above the solid cloud are ignored. Above z_i the EIL has different layers as described by Moeng et al. [2005], Wang et al. [2008], Katzwinkel et al. [2011], and Malinowski et al. [2013]. Here an approach similar to the one described by Yamaguchi and Randall [2012] is used for choosing EIL top by calculating dT/dz above z_i. Under ideal conditions, this produces a Gaussian-type curve from which the upper limit of the EIL is picked for the present study when dT/dz is ~10% of the curve’s maximum. The ideal condition is not always observed for POST flights given the complexity and variability of the EIL caused by turbulence and unexpected layers situated above cloud top. In those cases, a combination of 1 Hz LWC, q_i, U, and U_{fl} data from porpoising profiles is used to subjectively estimate the upper limit of the EIL.

[15] Additional aspects of Table 1 include the following: (1) Mean wind direction measured by the TO at cloud top, $U_{fl} = 332^\circ$, is nearly the same as the ~328° orientation of the CA Coast; however, 8 of 15 flights have a wind direction from the continent either in-cloud or above cloud. (2) All flights show vertical wind shear U_z near cloud top, with some flights showing large values. The shear is estimated by calculating the largest value of dU/dz and dividing by the layer thickness (Δz) over which it occurs. This layer is frequently found just above cloud top. Large uncertainties exist in the average shear values given the turbulent nature of the cloud top environment. (3) Values of dz/dt are calculated by using linear regression of the relationship between z_i and flight time for all cloud top penetrations. (4) TO3 shows $dz/dt \sim 0$ cm s$^{-1}$, TO10 shows the fastest lowering of cloud top, TO13 has the fastest rising of cloud top and the smallest temperature jump ΔT, and night flight TO6 has an extensive higher cloud cover and rapidly lowering cloud top.

3. Entrainment Measurements

3.1. Method

The mixed layer theory of Lilly [1968] predicts that w_e can be determined using the “flux-jump” approach given by

$$w_e = \langle w \times \phi \rangle / \Delta \phi$$

where ϕ is a conserved scalar quantity that has a large difference between the top of the cloud and the free atmosphere above the EIL, $\langle w \times \phi \rangle$ is the vertical flux of the entrained conserved scalar at cloud top, w is the vertical velocity, and $\Delta \phi$ is the scalar’s jump across the EIL. Angled brackets indicate averages.

A variation of the flux-jump approach for estimating w_e is applied to the POST Sc by using conditional sampling to identify parcels (cloud holes) that contain the conserved scalar entrained into the Sc. This approach has been applied previously by Nicholls [1989], Khalsa [1993], Wang and Albrecht [1994], Wang and Lenschow [1995], and Gerber [1996] using scalars including ozone, dimethyl sulfide, and q_i.

The q_i scalar is again used for the POST Sc to estimate w_e such as done by Gerber et al. [2005]:

$$w_e = A_r \left(\langle [LWC' / \rho + q_i] \rangle \right) / \Delta q_i = F_e / \Delta q_t$$

where the primed parameters represent differences between the value of the parameters in the hole and the value adjacent to the hole unaffected by entrainment, A_r is the sum of all horizontal dimension of the holes divided by the total flight distance, q_i is the water vapor mixing ratio, ρ is air density, and Δq_i is the jump across the EIL ($\Delta q_i = LWC' / \rho + \Delta q_t$). F_e is defined as the entrainment mass flux with units g kg$^{-1}$ m s$^{-1}$ where g is the mass of the scalar in a kilogram of atmospheric air, and m s$^{-1}$ are units for w.

LWC measured by the PVM is called the “indicator variable” [Khalsa, 1993] used to identify the location and
horizontal dimension of entrained parcels (cloud holes) and to calculate LWC. All POST flights show holes with reduced LWC, and the holes are readily identifiable. Figure 4 gives an example of holes identified during one porpoise below Sc top on flight TO10. The assumption is made that the narrow regions of reduced LWC (blue) are due to evaporation or dilution of cloud water caused by entrainment. The criterion used for identifying holes also requires that LWC < 0.01 g m⁻³. Breaks in otherwise solid Sc rarely occurred in QLP portions of the POST flights. The Sc occasionally showed LWC = 0 g m⁻³, with TO9 having the greatest percentage 0.6% of holes without LWC along the flight track, and with all other flights having percentages <0.5%.

[23] Equation (2) also requires values for \(q'_i \) within the LWC holes. Given the slow rate of \(q'_i \) data measured on the TO, 50 Hz UFT in-cloud temperature data is used instead to estimate \(q'_i \) by assuming that holes with reduced LWC are at water saturation where \(q_s \) (saturated water vapor mixing ratio) is calculated with the Clausius-Clapeyron relationship. Support for this assumption comes from earlier tethered-balloon observations in FIRE Sc [Albrecht et al., 1988] with the saturation hygrometer [Gerber, 1980], from a slant profile in Sc with the hygrometer on a motorized airship [Gerber, 1994], and from the hygrometer measurements [Gerber, 1991] in turbulent and unbroken radiation fog with a large vertical temperature gradient. In all three cases measured relative humidity (RH) only varied between 99.5% and 100.5%. The differences between \(q_i \) and \(q_s \) for this RH range are small.

[24] The method for picking out holes from the LWC data is detailed in Gerber et al., 2005, and the same procedure is used here. A brief description of the procedure follows: A running average of LWC data over 400 m of flight path is used to establish average LWC background values. The average values are multiplied by a constant \(K_1 = 0.97 \) and all LWC data in the 50 Hz record are deleted if they are smaller than this average. The resulting gaps in the 50 Hz data are closed by extrapolation, and the 50 Hz data is again given a new running average over 400 m which is multiplied by K2 = 0.94. The original 50 Hz LWC data is then compared to the new LWC average and all original 50 Hz data with LWC less than the new LWC average are identified as LWC holes created by entrainment. A similar procedure is used for UFT-M data (K3 = 0.998) to find deviations from average background \(T \) data after trend removal to calculate values of \(q'_i \) within holes. The use of the K constants reduces the effect of small amplitude noise in the 50 Hz data. The values of \(w \) used in equation (2) are referenced to a 3 km running mean of the 50 Hz \(w \) data, which removes most of the residual vertical velocities due to the aircraft porpoising and gives \(<w> = 0 \text{ m s}^{-1}\).
Table 2. Average Entrainment Velocity \((w_e) \) and Entrainment Flux \((F_e) \) Calculated Using 10 Profiles Above Cloud Top for Each POST Flight

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>(w_e) (mm/s)</th>
<th>(\sigma(w_e)) (mm/s)</th>
<th>(F_e) (g/kg m/s)</th>
<th>(\sigma(F_e)) (g/kg m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO1</td>
<td>5.3</td>
<td>4.0</td>
<td>0.0082</td>
<td>0.0053</td>
</tr>
<tr>
<td>TO2</td>
<td>1.5</td>
<td>0.4</td>
<td>0.0045</td>
<td>0.0008</td>
</tr>
<tr>
<td>TO3</td>
<td>7.2</td>
<td>2.7</td>
<td>0.0310</td>
<td>0.0032</td>
</tr>
<tr>
<td>TO5</td>
<td>12.4</td>
<td>12.8</td>
<td>0.0126</td>
<td>0.0024</td>
</tr>
<tr>
<td>TO6</td>
<td>2.1</td>
<td>0.6</td>
<td>0.0135</td>
<td>0.0022</td>
</tr>
<tr>
<td>TO7</td>
<td>18.2</td>
<td>9.8</td>
<td>0.0110</td>
<td>0.0018</td>
</tr>
<tr>
<td>TO8</td>
<td>3.8</td>
<td>3.2</td>
<td>0.0040</td>
<td>0.0013</td>
</tr>
<tr>
<td>TO9</td>
<td>4.3</td>
<td>4.3</td>
<td>0.0047</td>
<td>0.0007</td>
</tr>
<tr>
<td>TO10</td>
<td>1.4</td>
<td>0.3</td>
<td>0.0084</td>
<td>0.0016</td>
</tr>
<tr>
<td>TO12</td>
<td>2.5</td>
<td>0.7</td>
<td>0.0130</td>
<td>0.0037</td>
</tr>
<tr>
<td>TO13</td>
<td>27.2</td>
<td>134.4</td>
<td>0.0224</td>
<td>0.0045</td>
</tr>
<tr>
<td>TO14</td>
<td>9.2</td>
<td>1.8</td>
<td>0.0190</td>
<td>0.0030</td>
</tr>
<tr>
<td>TO15</td>
<td>11.0</td>
<td>5.6</td>
<td>0.0172</td>
<td>0.0033</td>
</tr>
<tr>
<td>TO16</td>
<td>2.4</td>
<td>0.5</td>
<td>0.0083</td>
<td>0.0003</td>
</tr>
<tr>
<td>TO17</td>
<td>2.5</td>
<td>3.2</td>
<td>0.0078</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

*One standard deviation of the uncertainty of each parameter is given by \(\sigma \).

3.2. Entrainment Flux and Velocity

[25] A surprising observation in POST Sc is the sign of the LWC' flux (LWC' \(\times w' \)) in conditionally sampled holes. The expected sign is positive which corresponds to the product of negative values for LWC' and for \(w' \) of descending holes, such as found for one flight during DYCOS II [see Gerber et al., 2005, Figure 4]. Instead for some POST Sc, LWC' flux shows negative values indicating that \(w' > 0 \) m s\(^{-1}\) and that the holes are ascending. This effect is strongest near Sc top. The expected \(q'_w \) flux should also be positive near cloud top given the smaller value of \(q_w \) in cooled and descending holes in comparison to \(q_w \) in the adjacent cloud unaffected by entrainment. However, some negative values of \(q'_w \) flux are also found in the Sc. This means that \(q'_w \) must be positive and corresponds to descending holes that are warmer than the adjacent cloud. A final possibility is that warmer holes ascend. The warmer holes suggest that water droplets are evaporating in those holes. All flights show a significant number of warm holes except for (classical) flights TO6, TO9, TO10, TO12, TO16, and TO17 that show behavior similar to Figure 4 in Gerber et al. [2005]. This surprising behavior of the entrainment fluxes in the other POST Sc (“non-classical”) flights is likely a result of strong mixing near cloud top due to wind shear that also increases the uncertainty of applying equation (2).

[26] The procedure for finding the average influence of cloud holes on \(F_e \) for each POST flight consists of first translating vertically all porpoising data so that the height of all cloud tops is identical. Second, it is necessary to establish an approach that deals with the observed ascending and descending holes in estimation \(F_e \). The observations show that the average \(F_e \) is often smaller close to cloud top than deeper in the cloud and that the average has an approximate value of zero close to cloud top for Sc with strong shear and mixing at the cloud top interface. Given the abundance of observed holes in the Sc, especially near cloud top, the estimation of \(w_e \) using such average values of \(F_e \) at cloud top for equation (2) obviously leads to unrealistic results. The approach used here instead hypothesizes that some observed holes just below cloud top are lost by crossing the turbulent and mixing cloud top interface (detrain) and lose all LWC by evaporation thus moistening the EIL. The assumption is made that detraining holes are identified by holes that are ascending just below cloud top. Applying this assumption to equation (2), except for warm descending holes, is consistent with giving all other ascending fluxes positive values in equation (2) which produces more realistic values of \(F_e \) at cloud top needed to estimate \(w_e \) especially for the non-classical Sc. The \(w_e \) estimated in this fashion then represents the reduction of LWC both by the entrainment of drier air and by the evaporation of LWC at cloud top.

[27] The 50 Hz LWC, UFT-M, and gust probe data, and the jumps listed in Table 1 are used to calculate \(F_e \) and \(w_e \) for all flights given the above approach. \(F_e \) is averaged over 10 m increments below cloud top, and linear regression is used to extrapolate the \(F_e \) versus height relationship to cloud top where \(F_e \) is divided by \(\Delta q \) to produce \(w_e \). Table 2 lists values of \(F_e \) and \(w_e \) resulting from this procedure.

[28] Figure 5 shows \(w_e \) for all flights listed in Table 2 as a function of vertical wind shear \(U_{\text{fl}} \). Several trends are apparent in Figure 5. Daytime \(w_e \) values are significantly smaller than nighttime \(w_e \) values as has been noted previously [e.g., see Gerber et al., 2005]. The largest values of \(w_e \) correspond to the weakest static stability of the EIL as indicated by the smallest \(\Delta T \) values listed in Table 1 for flights TO5, TO7, and TO13. Both daytime and nighttime \(w_e \) values show a tendency of decreasing \(w_e \) with increasing wind shear, although the scatter and limited number of data points in Figure 5 prevent a firm conclusion. The trend is not followed by TO5 which has a large \(w_e \) that may be related to the small \(\Delta T \) jump for TO5. Decreasing \(w_e \) with increasing wind shear agrees with the finding by Katzwinkel et al. [2011], but disagrees with the large eddy simulation (LES) of a Sc with strong wind shear [Wang et al., 2012].

[29] The \(w_e \) values shown in Figure 5 and Table 2 can be compared to some recently published \(w_e \) values for Sc found in Faloona et al. [2005], Gerber et al. [2005], Wang et al. [2008, 2012], Caldwell and Bretherton [2009], and Katzwinkel et al. [2011]. Most values of \(w_e \) are within an order of magnitude, but some differences are found. The Gerber et al. values are about 2 times larger than those from the other sources.

Figure 5. Entrainment velocity \(w_e \) as a function of vertical wind shear near Sc top for POST flights (numbered). Open squares indicate daytime flights, solid circles are nighttime flights, and the open circle is a nighttime flight with a high overcast. Vertical lines are ±1 standard deviation of the \(w_e \) measurement variability.
GERBER ET AL.: ENTRAINMENT RATES IN Stratocumulus

Figure 6. Log probability of the entrainment mass flux \(F_e \) as a function of entrainment hole length measured during aircraft porpoising through Sc on POST flights. The 4 m and 8 m numbers indicate the minimum lengths that must be measured to achieve 90% of \(F_e \).

Falloona et al., with both sets of \(w_e \) measured on the same aircraft during DYCOMS II. Values given by Wang et al. and Katzwinkel et al. are for the top of the EIL rather than at cloud top making for a questionable comparison. The data in their Figure 8 have nine Bretherton values that can be compared to nine TKE values predicted for POST, and Katzwinkel et al. are for the top of the EIL rather than LES-predicted average diurnal values from Caldwell and Bretherton are close to average values estimated for POST, but the LES modeling required some “tuning” to provide reasonable values.

It is also of interest to compare the \(w_e \) values in Table 2 to calculations for POST Sc by Carman et al. [2012] of TKE (turbulent kinetic energy) assumed to be consumed by the entrainment process. The data in their Figure 8 have nine TKE values that can be compared to nine \(w_e \) values in corresponding POST flights. The square of the correlation coefficient \(R^2 \) between the two parameters is 0.207. This small value of \(R^2 \) is caused by values of TKE and \(w_e \) for flight TO3 which has the strongest directional wind shear at cloud top. Excluding TO3 from the correlation results in \(R^2 = 0.858 \).

The measurement of \(F_e \) in all holes and their horizontal lengths makes it possible to construct log probability plots of \(F_e \) versus hole length as shown in Figure 6. The relationship between \(F_e \) and length is approximately lognormal for all flights but shows significant difference between flights. \(F_e \) lengths vary about a factor of 2 for small lengths and a factor of 4 for lengths of \(\sim 100 \) m. The contribution to \(F_e \) for lengths of \(> 100 \) m falls off faster than the lognormal behavior. The 4 m and 8 m lengths indicated in Figure 6 show horizontal lengths that measurements and models need to resolve to capture 90% of \(F_e \) in such Sc. The curves in Figure 6 also have bearing on conceptual ideas of how Sc entrain. For example, the small-scale entrainment on Sc cloud top domes and “engulfment” at downwelling areas shown in the conceptual sketch of Sc by Wood [2012] appear to be inconsistent with the continuous curves in Figure 6.

3.3. Analysis of Flights TO3, TO10, and TO13

Flights TO3, TO10, and TO13 are chosen and analyzed in greater detail (see Malinowski et al. [2013] for additional descriptions of TO10 and TO13). These three flights illustrate the wide-ranging behavior of the POST Sc, and they give new insight in how entrainment in such Sc should be viewed. Rather than evaluating 10 vertical profiles during porpoising as done in the preceding, all \(\sim 50 \) profiles are evaluated for each flight. Some of the parameters shown in Table 1 are recalculated in Table 3 using all profiles. Comparison of Table 2 with Table 3 parameters shows that the 10 profiles used for the former are in reasonable agreement with the 50-profile results.

Figures 7 and 8 compare the three flights to illustrate their large differences for \(\Delta z/d \) and \(F_e \). Figure 7 shows the rate of change of cloud top and of the top of the EIL as a function of flight time during QLP of each flight. The dashed lines in Figure 7 are constructed using linear regression of the data and provide the average change of cloud height and of the EIL. The regression line for night flight TO3 ends at \(\sim 15,000 \) s UTC, because the remainder of the flight is outside of QLP. In the plot for daytime flight TO10, the regression line is applied only to data for UTC > 70,000 s when cloud top rapidly decreases. Nighttime flight TO13 is unique, because cloud top grows rapidly through an adjacent layer with nearly the same \(q_i \) as the average \(q_i \) in the cloud, and with the smallest value of \(\Delta T \) of any flight.

The behavior of \(F_e \) as a function of height below cloud top is shown in Figure 8. The data points represent averages of \(F_e \) over 10 m increments below cloud top. Linear regression is used to generate the dashed lines that extrapolate data to cloud top to produce \(F_e \) values used to calculate \(w_e \) with equation (2). \(F_e \) for TO10 is much smaller than for the two night flights as expected. Two dashed lines are applied to \(F_e \) for TO3. One is applied to the approximately linear behavior of \(F_e \) for \(zi - z > \sim 20 \) m, and the second takes into account the unexpected sharp increase in the \(F_e \) data near cloud top. Thus, the usual assumption of the linear dependence of

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>(\Delta z) (m)</th>
<th>LWC (g/m²)</th>
<th>(q_i) (g/kg)</th>
<th>(\Delta q_i) (g/kg)</th>
<th>(T_i) (°C)</th>
<th>(\Delta T_i) (°C)</th>
<th>(U_i) (m/s)</th>
<th>(U_m) (m/s)</th>
<th>(U_L) (1/s)</th>
<th>(\Delta s) (m)</th>
<th>(w_e) (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO3 A</td>
<td>43.5</td>
<td>0.41</td>
<td>7.98</td>
<td>-2.91</td>
<td>10.5</td>
<td>9.9</td>
<td>15.0</td>
<td>1.4</td>
<td>0.295</td>
<td>11.7</td>
<td>9.3</td>
</tr>
<tr>
<td>11.9</td>
<td>0.07</td>
<td>0.50</td>
<td>-0.83</td>
<td>0.5</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>0.252</td>
<td>6.9</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>32.2</td>
<td>0.42</td>
<td>8.05</td>
<td>-2.08</td>
<td>10.4</td>
<td>9.3</td>
<td>14.5</td>
<td>1.5</td>
<td>0.314</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>0.09</td>
<td>0.54</td>
<td>-0.83</td>
<td>0.3</td>
<td>0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>0.226</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TO10</td>
<td>32.8</td>
<td>0.41</td>
<td>7.98</td>
<td>-6.17</td>
<td>10.0</td>
<td>9.5</td>
<td>9.6</td>
<td>-4.8</td>
<td>0.211</td>
<td>28.6</td>
<td>1.3</td>
</tr>
<tr>
<td>13.0</td>
<td>0.10</td>
<td>0.11</td>
<td>-0.17</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
<td>-1.2</td>
<td>0.110</td>
<td>14.9</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>59.8</td>
<td>0.32</td>
<td>8.50</td>
<td>-0.51</td>
<td>10.4</td>
<td>2.6</td>
<td>10.4</td>
<td>1.5</td>
<td>0.167</td>
<td>16.2</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>38.1</td>
<td>0.19</td>
<td>0.25</td>
<td>-1.1</td>
<td>0.4</td>
<td>1.6</td>
<td>1.2</td>
<td>1.1</td>
<td>0.138</td>
<td>12.4</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>TO13 A</td>
<td>-</td>
<td>0.28</td>
<td>+0.11</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>133.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.16</td>
<td>+0.20</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1033.4</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The parameters are defined in Table 1 except for \(\Delta s \), which is the layer thickness near cloud top over which \(U_i \) is estimated. The quantities in the line following each flight number are parameter averages. The line below each flight number contains the parameters’ one standard deviation.
Figure 7. The height of cloud top (black circles and lines) and the height of the top of the EIL (red circles and lines) as a function of time during the quasi-Lagrangian flight times for flights TO3, TO10, and TO13. A and B are two different sections of flight TO3. W and E indicate the times for TO10 when the aircraft was farthest east and west during the zigzag flight pattern. Dashed lines are least squares fit to data.

3.3.1. Flight TO3

TO3 differs in several aspects from the other two flights. Most obvious is the clearing of Sc observed NNW of the flight track as shown in Figure 1. Satellite imagery shows the clearing advancing SSE faster than the progression of the TO during the QLP for this flight. TO3 also differs in that its QLP required modification (after ~15,000 UTC), because the TO was approaching restricted airspace. Figure 9 shows the actual TO3 QLP with the primary pattern labeled A and the modified pattern labeled B which is located ~40 km E of the centerline of pattern A. Table 3 lists parameter values for the two patterns. Figure 7 shows that the EIL is significantly thinner for B and that cloud top is ~40 m lower for B. The latter indicates that cloud top for TO3 is tilted upward E to W which causes baroclinic behavior that is a common feature associated with Sc off the California coast [Brost et al., 1982a].

Figure 10 shows measurements from a typical vertical profile from pattern A. Horizontal lines bracket the EIL chosen from large changes in the vertical gradients of T, U, and U_{θ}. The measurements show vertical wind shear and clockwise rotation of wind in the EIL and show that U has a peak in the EIL that can be a result of thermal wind caused by certain sea surface temperature gradients [Gerber et al., 1989]. The wind above the EIL is dry and of continental origin. The strongest wind shear gradient and its location close to cloud top are similar to the strong wind shear case modeled...
by Wang et al. [2012] for a VOCALS Sc near the South American continent.

The strong directional wind shear at cloud top causes mixing through a deep layer of the Sc as illustrated in the left plot of Figure 11 where the contributions of LWC$'$ and q_v' fluxes to F_e are given without being assigned positive values. The large number of F_e values on either side of $F_e = 0$ in the left plot indicates the presence of strong mixing with the strongest mixing within ~20 m below cloud top, which is also reflected in the increase of F_e near cloud top shown in Figure 8. The data in the right plot show only q_v' values in descending cloud holes with temperature warmer than the adjacent unaffected cloud. Thus, warm air from above cloud top entrains into the Sc and is apparently evaporating cloud water deep in the cloud. This process must be related to the rapid dissipation of the Sc upwind of the QLP.

3.3.2. Flight TO10

The lowering of cloud top height as a function of time ($dz/dt \sim 23$ mm s$^{-1}$) during the TO10 QLP is fastest compared to this change for all other POST flights. The change for TO10 far exceeds $w_e = 1.3$ mm s$^{-1}$ calculated using equation (2) for this flight. At first glance, this suggests that the flux-jump equations appear inadequate for calculating entrainment for TO10.

The entrainment velocity w_e can be estimated in another way for TO10 using the “difference method” [Stevens et al., 2003b] given by

$$w_e = \frac{dz}{dt} - Dz_i$$

where D is the large scale divergence and Dz_i is the mean subsidence velocity (U_{sub}). Faloona et al. [2005] gives U_{sub} in Sc off the California coast during DYCOMS II as ~2 mm s$^{-1}$, and Wood and Bretherton [2004] give U_{sub} an average range of 2–4 mm s$^{-1}$. Inserting these estimates of U_{sub} into equation (4) yields an unrealistic value of $w_e \sim 20$ mm s$^{-1}$ for TO10. Figure 7 shows that the height of the EIL top during the TO10 QLP also rapidly decreases. This suggests that subsidence for TO10 was much larger than the given U_{sub} averages, possibly caused by advection of continental air above cloud top which is consistent with the shift in the wind direction in the EIL. Dry air flowing off the California continent, sometimes termed the “Santa Ana” wind, can rapidly lower the boundary layer [Gerber, 1986; see also Sundararajan and Tjernstrom, 2000]. Other possibilities include the location of the QLP for TO10 in an exceptionally strong descending branch of a sea breeze circulation, and the location of the QLP in a gradient in the slope of the inversion as suggested by the changing difference in the heights of the E-W zigzag as shown in Figure 7. These phenomena are possible explanations for the rapidly lowering TO10 boundary layer rather than assigning the lowering to w_e.

Figure 9. Flight path of the aircraft during flight TO3. A (black) is next to the intended quasi-Lagrangian zigzag pattern, and B (red) is a deviation from the pattern caused by restricted airspace. B is closer to the continent and has different Sc properties than Sc for A (see text and Table 3).

Figure 10. One typical vertical slant profile from flight TO3, TO10, and TO13 of LWC (liquid water content), T (air temperature), q_v (water vapor mixing ratio), U (wind speed), and $U_Θ$ (wind direction) as a function of z (height above ocean surface). Dashed lines show bottom and top of the EIL (Entrainment Interface Layer), except for flight TO13 where the dotted line is the distance above cloud top corresponding to the mean thickness of the moist layer adjacent to cloud top.
Flight TO13 is a unique POST flight because its QLP shows the most rapid increase in the height of cloud top (~10 mm s\(^{-1}\)) that grows primarily through a moist preexisting layer with the smallest \(\Delta z\) and \(\Delta q'\) of any flight. In Table 3, two sets of parameter averages are labeled A and B for TO13. The A averages correspond to all vertical profiles from the entire QLP shown in Figure 7, while B averages omit about 10% of the vertical profiles where jumps between cloud top and the atmosphere above the EIL are evident. The B averages are for profiles where the cloud grows into the moist layer where an upper limit of the EIL could not be identified. Table 3 also shows that the average value \(\Delta q'\) in B is slightly positive indicating a larger \(q'\) in the moist layer than in the cloud.

Both the small values of \(\Delta T\) and \(\Delta q'\) adjacent to cloud top and the wind shear above cloud top must have contributed to the large values of \(w_c\) shown in Table 3 for A and B. The large \(w_c\) values are unrealistic given that both values are significantly larger than the rate at which cloud top rises. Small values \(\Delta T\) and \(\Delta q'\) and wind shear must also have influenced the strong mixing within the cloud as illustrated in Figure 11. The left plot shows large positive and negative

![Figure 11](image)

Figure 11. Fifty hertz data points for \(F_c\) (all measured positive and negative values are shown) as a function of height below cloud top \((z_i - z)\) for flights TO3, TO10, and TO13. Left plots give the contribution to \(F_c\) from holes with depleted LWC' (black data) and with \(q'_v\) (red data). Right plots show only \(q'_v\) data corresponding to descending holes with temperature warmer than adjacent cloud unaffected by entrainment.

the rest of the profiles are much steeper and resemble the large wind shear gradients found near cloud top for TO3. The average value for \(\Delta z\) shown in Table 3 is not much different from the average value of EIL thickness \(\Delta z\); but when only one third of the profiles with steeper gradients are considered, then \(\Delta z \sim 0.35 \Delta z\). This behavior is similar to that described by Kurowski et al. [2009] where large convective eddies in the Sc are suggested to “squeeze” the EIL thus enhancing the local shear and reducing the gradient Richardson number. This effect is observed for TO10 profiles as shown in Figure 12 where an approximate dependence is seen between the decreasing thickness of the EIL and increasing wind shear, an effect also shown by Katzwinkel et al. [2011]. The wind shear profiles in TO10 as well as in the Katzwinkel et al. [2011] Sc case may be unusual, because sharp vertical gradients of wind shear in the rest of the POST flights are usually found just above cloud top, as also noted by Carman et al. [2012] for POST Sc.

3.3.3. Flight TO13

Flight TO13 is a unique POST flight because its QLP shows the most rapid increase in the height of cloud top (~10 mm s\(^{-1}\)) that grows primarily through a moist preexisting layer with the smallest \(\Delta z\) and \(\Delta q'\) of any flight. In Table 3, two sets of parameter averages are labeled A and B for TO13. The A averages correspond to all vertical profiles from the entire QLP shown in Figure 7, while B averages omit about 10% of the vertical profiles where jumps between cloud top and the atmosphere above the EIL are evident. The B averages are for profiles where the cloud grows into the moist layer where an upper limit of the EIL could not be identified. Table 3 also shows that the average value \(\Delta q'\) in B is slightly positive indicating a larger \(q'\) in the moist layer than in the cloud.

Both the small values of \(\Delta T\) and \(\Delta q'\) adjacent to cloud top and the wind shear above cloud top must have contributed to the large values of \(w_c\) shown in Table 3 for A and B. The large \(w_c\) values are unrealistic given that both values are significantly larger than the rate at which cloud top rises. Small values \(\Delta T\) and \(\Delta q'\) and wind shear must also have influenced the strong mixing within the cloud as illustrated in Figure 11. The left plot shows large positive and negative

![Figure 12](image)

Figure 12. Vertical wind shear near Sc top as a function of EIL thickness for flight TO10 suggesting an inverse relationship (see text).
4. Microphysics

The cooling of entrained air by LWC evaporation and by IR flux divergence near cloud top is key processes thought to affect the negative buoyancy that drives the circulation in Sc. It has been unclear to what degree each of the cooling effects play. The Twin Otter data permit new insight on this uncertainty since it is possible with the 50 Hz temperature (UFT-M) and LWC (PVM) data to look at individual holes and to infer the importance of each cooling effect on the entrainment process. This look is limited to several POST flights chosen from prediction of the Sc “buoyancy reversal” effect as calculated from CTEI (cloud top entrainment instability) and from “mixture fraction analysis.”

4.1. CTEI

According to Lilly [1968], Randall [1980], and Deardorff [1980], the Sc layer can experience CTEI becoming unstable and dissipating given temperature and moisture jumps over the EIL that exceed certain values. The criterion for onset of instability is predicted to be caused by generation of negative buoyancy from cooling by LWC evaporation at cloud top under the condition that a parameter k exceeds a value of 0.23.

An expression for k is given by Kuo and Schubert [1988]:

$$k = c_p \Delta \theta_c / L \Delta q$$

(4)

where c_p is the specific heat at constant pressure, $\Delta \theta_c$ is the jump in equivalent potential temperature, and L is the latent heat of vaporization.

Another expression for k is given by Stevens et al. [2003b] as

$$k = 1 + \Delta \theta_c / L \Delta q$$

(5)

where $\Delta \theta_c$ is the jump in liquid water static energy.

Observations in a number of studies [Hanson, 1984; Albrecht et al., 1985; Nicholls and Turton, 1986; Kuo and Schubert, 1988; Gerber et al., 2005] of Sc with $k > 0.23$ show that instability and breakup do not happen for those Sc. MacVean and Mason [1990] suggest instability onset values closer to $k = 0.7$ for Sc with mixing. Additional stability criteria are described by Siems et al. [1990] and Duyker [1993].

Equations (4) and (5) are applied to jumps listed in Table 1 for POST flights and give nearly identical values of k. Only three flights are found with $k > 0.23$: $k = 0.451$ for TO6; $k = 0.354$ for TO10; and $k = 0.377$ for TO12. While these k values indicate that direct mixing between cloud top and free atmosphere causes buoyancy reversal, Sc again show no tendency for dissipation and breakup during the QLP flight periods.

4.2. Mixture Fraction Analysis

Mixtures consisting of cloudy air at cloud top and of air above the EIL to mixing fractions given by

$$\chi = m_2 / (m_1 + m_2)$$

(6)

where m_1 is the mass of air from above the EIL in the mixture and m_2 is the mass of cloudy air in the mixture. This analysis has been used frequently [Siems et al., 1990; Wang and Albrecht, 1994; Shao et al., 1997; Stevens, 2002; VanZanten and Duynkerke, 2002; de Roode and Wang, 2007; Mellado et al., 2007; Kurovski et al., 2009; Yamaguchi and Randall, 2012; Hill, 2012; S. A. Hill et al., 2013] of Sc with mixing. The entrainment interface layer of stratuscumulus-topped boundary layers during POST, submitted to Atmosphere Research, 2013. The analysis predicts in part the amount of negative buoyancy caused by LWC evaporation in mixtures of corresponding χ values. The values are calculated for POST Sc by noting that equation (5) can be rewritten to give $\chi = \delta q / \Delta q$, [VanZanten and Duynkerke, 2002] where δq is the local change of q_i in the EIL following mixing.

Equations (16)–(20) in Stevens [2002] describing “saturated buoyancy perturbations” (no radiation effects included) are used along with the jumps listed in Table 1 to calculate the average maximum buoyancy change b_mix between the unaffected cloud and the mixture in cloud holes, and to calculate the corresponding χ_mix for each flight. The superscript asterisk indicates b and χ values representing the borderline.
between cloudy and cloud-free mixtures. The value of b^* can represent mixtures with either positive or negative buoyancy change with the latter predicting the largest cooling possible due to LWC evaporation. The buoyancy change is used to calculate the predicted temperature change δT_p that corresponds to b^* of the mixtures (see Table 4). Only flights TO6, TO10, and TO12 have predicted negative b^* and temperature changes (buoyancy reversal in holes) due to LWC evaporation in cloudy mixtures, in agreement with the CTEI and mixture fraction analysis results in the preceding sections. According to Table 4, all other POST flights show predicted average temperatures warmer than unaffected cloud top in mixtures between cloudy air and the free atmosphere above the EIL. Table 4 also lists the average measured temperature change δT_m between cloud holes and cloud unaffected by entrainment. Figure 13 plots both sets of temperature changes and illustrates the large differences between the predicted and measured temperature changes.

Flights TO6, TO10, and TO12 are chosen for a closer look in the following, because the predicted buoyancy reversal for those flights suggests that LWC evaporation causes cooling in their entrained mixtures.

4.3. Cooled Cloud Holes

Figure 14 shows portions of flights TO10 and TO12 where 50 Hz UFT-M temperature data are compared to the presence of cloud holes identified from the synchronized 50 Hz LWC data. The temperature record shows reduced values over small time intervals from a roughly constant background temperature. The correlation between the locations of reduced temperature and LWC holes is apparent. However, in Figure 14, some periods of reduced temperature (1) are not related to cloud holes, are partially filled with a cloud hole, and (3) are totally filled with a cloud hole. The lack of cloud holes in 1 and 2 indicates that the reduced temperature periods in Figure 14 can form without cooling due to LWC evaporation. The filled periods 3 show about the same cooling as 1 and 2 further suggesting a cooling effect in the reduced temperature periods is dominated by IR radiative cooling rather than by LWC evaporation.

A similar conclusion results for TO6 which has the largest predicted buoyancy reversal. Figure 15 shows the measured maximum reduction of LWC′ in holes for TO6 as a function of the corresponding temperature δT_p. The data point at the end of the dashed line is the maximum δT_p value predicted by mixture fraction analysis. All measured data point should fall above the dashed line if cooling due to LWC evaporation plays a significant role. Instead, δT_m appears approximately independent of the depleted LWC′ in holes indicating a lack of significant cooling due to droplet evaporation. The analysis similar to Figure 15 is done for all flights; all show insignificant cooling due to evaporation and most show some warming especially for large values of $-\text{LWC}'$ that occur near cloud top. (For plots of δT_m versus LWC′ for other flights, see http://www.gerberscience.com/POSTdata/POSTdata.html)

The results from TO6, TO10, TO13 support the earlier findings [Gerber et al., 2002, 2005; de Roode and Wang, 2007] from DYCOMS and DYCOMS II that detrainment at Sc top cools and moistens the EIL until a near-buoyancy match takes place between the cloud and the EIL adjacent to cloud top. Radiative cooling near cloud top apparently destabilizes the air causing entrainment of the conditioned EIL mixture. The conditioning of the EIL is also a conclusion reached by Yamaguchi and Randall [2012] who noted...
that radiative cooling and cooling due to LWC evaporation are of the same order of magnitude, where the significant LWC cooling occurs in the EIL. LES modeling by Moeng et al. [2005] also concludes that Sc evaporate at cloud top.

The present results suggest instead that changes in droplet concentration for a given LWC should have a minimal effect on the entrainment rate, at least for the unbroken POST Sc. The role of larger values of LWC is to cause more evaporation in the EIL and to more efficiently reduce the potential energy of overlying warm and dry air causing enhanced entrainment in an indirect manner. Whether this indirect evaporative cooling is identical to hypothetical evaporative cooling in the holes and affects the buoyancy generation in the cloud the same way depends on detrainment and the behavior of the EIL which remain to be clarified. For typically large \(T \) jumps across the EIL, this indirect effect becomes minimal, because the EIL conditioning is dominated by the detrainment of sensible heat from the cloud. However, the evaporative cooling in the EIL becomes important for small temperature jumps. The effect of radiative cooling on droplet concentration and LWC changes also should be minimal, because the blackbody radiative behavior of unbroken Sc remains efficient despite such changes. Only the maximum radiative cooling at cloud top changes, whereas the radiative cooling rate, \(\text{°C h}^{-1}\text{m}^{-3} \), integrated over the cloud depth appears to remain the same [Davies and Alves, 1989]. High-resolution modeling near cloud top is required to resolve the effect of vertical radiative cooling that changes rapidly just below cloud top.

All POST flights show evidence of mixing at cloud top suggesting that detrainment occurs for all. However, this does not mean that the temperature in all descending holes is a result of radiative cooling. Holes warmer than the adjacent unaffected cloud are also observed for flights such as TO3 and TO13 with strong shear and deep penetration of holes into the Sc. Such warm air entrainment is similar to the strong Sc shear case modeled by Wang et al. [2012] which concludes that the enhanced entrainment causes enhanced evaporation and negative buoyancy production but also reduces the positive buoyancy in the Sc.

The described buoyancy-matching nature of entrainment leads to an explanation why CTEI does not cause breakup of Sc when the critical value of \(k = 0.23 \) is exceeded. Both the formulations for CTEI and mixture fraction analysis assume that cloud top mixes directly with the free atmosphere above the inversion. Since entrained parcels come from the conditioned EIL having undergone prior mixing, \(k \) values will be smaller than when cloud top mixes directly with the free atmosphere. Also, models [Moeng et al., 2005; Wang et al., 2008] and measurements [Lenschow et al., 2000; de Roode and Wang, 2007; Katzwinkel et al., 2011] including those for POST Sc [Malinowski et al., 2013] show that the separation between cloud top and the top of the inversion is continuous. Therefore, direct interaction of cloud top with the free atmosphere does not occur and the usual applications of \(k \) and \(\gamma \) do not apply. If the assumption is made that \(T \) and \(q_0 \) are approximately inversely proportional in the EIL, then conditioned mixtures in the EIL will remain either nonbuoyant or buoyant with smaller values of \(k \) and \(b \) than such values predicted by the usual CTEI and mixture fraction analyses. The \(\delta T_m \) values in Figure 13 based on Stevens [2002] buoyancy equations for mixtures relate to the jump across the EIL without intermediate mixing by conditioning. Thus, those \(\delta T_m \) values are too large and should be much closer to the \(\delta T = 0\text{°C} \) line in Figure 13.

4.4. Effective Radius and Mixing

The high-rate PVM data make it possible to estimate the changes in effective radius \(R_e \) of cloud droplets caused by entrainment and thus deduce the nature of the mixing mechanism termed either homogeneous or inhomogeneous mixing (see Jensen et al. [1985] for definitions of the mixing mechanisms). The PVM simultaneously measures LWC/PSA (particle surface area) which is proportional to \(R_e \) that is also approximately equal to the mean volume radius \(r_v \) when the droplet size spectrum is relatively narrow [Martin et al., 1994; Gerber, 1996; Gerber et al., 2008].

Both \(R_e \) and \(r_v \) have been compared to LWC and droplet concentrations \(N \) to establish the mixing mechanism following entrainment [Gerber, 2000; Gerber et al., 2008; Burnet and Brenguier, 2007; Lehmann et al., 2009; Lu et al., 2011] Independence of \(R_e \) or \(r_v \) on changes in LWC or \(N \) is thought to reflect the inhomogeneous mixing mechanism; whereas changes in all parameters reflect homogeneous mixing. Burnet and Brenguier [2007] conclude that inhomogeneous mixing occurs in maritime Sc from DYCOMS II, and Lu et al. [2011] found the same mechanism dominating warm continental Sc, although they also observed an instance of homogenous mixing.

Figure 16 shows the relationship between LWC and \(R_e \) with an in-cloud resolution of 20 cm for first ~10 s of penetration into TO3, TO10, and TO13. All plots in Figure 16 show nearly constant values of \(R_e \) while LWC shows large changes, suggesting that mixing is of inhomogeneous nature. Some portions of the data for TO3 show reductions in \(R_e \),
and homogeneous mixing as also noted by Burnet and Brenguier [2007].

5. Conclusions

[64] The main impression left by this analysis of POST flights in unbroken Sc is their large variability: Sc cloud top rises or lowers for both day and night flights, the inversion is often sloped, strong shear at cloud top causes strong mixing in some Sc, and the application of classical entrainment rate formulation is questionable for most Sc. The complexities are likely related to the location of the POST flights off the coast of California near Monterey where an earlier aircraft Sc field study [Wakefield and Schubert, 1976; Brost et al., 1982a] in the same general area found offshore Sc affected by strong sea surface temperature gradients and by the continent causing the baroclinic nature of the atmosphere associated with wind shear and sloped inversions.

[65] The main emphasis of the present analysis is to estimate the entrainment velocity \(w_e \) into POST Sc in order to permit comparisons with model predictions. An unexpected complexity arises in this analysis because entrained parcels, termed cloud holes where droplet evaporation and/or dilution create narrow regions of reduced liquid water content, are observed to descend as well as ascend. This causes the net value of the entrainment flux \(F_e \) as well as \(w_e \) to be unrealistically close to zero for some Sc, even though these Sc are filled with holes. In order to deal with this situation, the assumption is made that due to turbulence and mixing at cloud top ascending holes just below cloud top are lost by moving move up through the cloud top interface and evaporating their LWC causing cooling and moistening of the EIL. All \(F_e \) values for ascending holes are given positive values in equation (2) for the formulation of equation (2) to be consistent with this assumption. The effect is to produce more realistic values of \(F_e \) at cloud top as well as more realistic values of \(w_e \) that now reflect both entrainment and detrainment at cloud top. The uncertainty in the calculated values of \(w_e \) is increased since detrainment is not directly measured in this approach.

[66] The value of \(w_e \) estimated for all flights is given by the ratio \(F_e / \Delta q_t \), where \(F_e \) is the entrainment mass flux and \(\Delta q_t \) is the total water jump between cloud top and the top of the inversion. The largest source of uncertainty in \(w_e \) is choosing the value of \(\Delta q_t \) that for some flights requires subjectivity. Also, small values of \(\Delta q_t \) cause large uncertainty in \(w_e \). The measurement of \(F_e \) is often more robust than the measurement of \(w_e \) and is useful for comparison with model predictions.

[67] The analysis of individual cloud holes permitted by the colocated within 0.5 m on the Twin Otter aircraft of the high-rate-temperature (UFT-M) and liquid-water-content (PVM) probes leads to the following conclusions: Measurements indirectly lead to the conclusion that cloud holes cooler than the adjacent cloud unaffected by entrainment are a result of radiative cooling and are not due to LWC evaporation which appears minimal in the holes. Such holes are observed in all flights. This conclusion is reached because of the presence of cooled parcels near cloud top that do not contain reduced LWC and of the reduction of LWC in cloud holes that does not lead to increased cooling in the holes. These observations strengthen the earlier conclusion that detrainment conditions the lower part of the EIL so that the moisture and temperature of entrainment air are nearly the same as in the cloud at cloud

Figure 16. Effective radius \(R_e \) and LWC for the first ~10 s of a descent into Sc on flights TO3, TO10, and TO13 using 20 cm resolution data.

Examples are at UTC = 9969.7 s and 9972 s. About 10% of the TO3 data show such reductions which occur when the value of LWC is smallest, suggesting that some homogenous mixing is taking place. Both TO10 and TO13 show a lesser percentage of reduced \(R_e \). Malinowski et al. [2013] describe a result for TO13 where significant changes of the droplet spectrum are measured; however, the changes occur deeper in the cloud where entrained warm air is mixing with the rest of the cloud.

[63] The analysis of \(R_e \) versus LWC for POST flights indicates that inhomogeneous-type mixing dominates in keeping with the conclusion reached by Burnet and Brenguier [2007] for DYCOMS II Sc. However, if the entrained air is pre-preconditioned and at nearly the same \(T \) and \(q_a \) as the cloud near cloud top, as shown for TO3, TO10, and TO13, it is not possible to distinguish between inhomogeneous mixing.
top. However, the observations also show other holes warmer than the adjacent cloud and show that these holes that can penetrate deep into the cloud causing droplet evaporation and Sc dissipation such as for Sc from TO3. Sc with strong shear and resulting turbulence and mixing causes the largest number of warm holes.

[68] Observations show Sc cloud top rarely contacting the top of the EIL and show entrained parcels preconditioned by detrainment in the lower part of the EIL which lead to the conclusion that the usual predictions of CTEI and buoyancy reversal dealing with jumps across the entire EIL are quantitatively incorrect.

[69] Some Sc show entrainment behavior where warm holes are rare and the holes are cool and descend in keeping with classical mixed layer theory, similar to one to Sc case observed during DYCOMS II [Gerber et al., 2005]. However, most POST Sc show non-classical behavior with strong mixing in-cloud and chaotic motion of the holes. The location of DYCOMS II Sc study, far from the continent, was chosen partly to avoid environmental complexities such as found for the POST Sc. Another look at the DYCOMS II Sc is warranted to see if their entrainment process is classical for all Sc.

[70] The conditional sampling of the holes in the POST Sc also produces information relating the length of the holes to F_e, as observed from the Twin Otter aircraft. The distribution of hole lengths versus F_e is lognormal for all flights, with the contribution to F_e negligible for lengths greater than a few hundred meters. To capture 90% of $F_e\alpha$, all lengths greater than ~5 m should be measured or modeled.

[71] The high-rate PVM data also produce measurements of effective radius (R_e) that are used to determine the mixing mechanism following entrainment. A comparison of R_e and LWC near cloud top for three POST flights mostly shows high correlation and turbulence and mixing causes the largest number of warm holes. Bucholtz took turns flying on the Twin Otter as flight scientists. Dion Rossiter put together the flight reports. Stuart Beaton brought the new NCAr Lyman-alpha hygrometer for deployment on the aircraft. Wojciech Kumala was responsible for the construction and maintenance of the University of Warsaw ultramfast temperature probe with which POST would perform this experiment. Janne Gobbi, NCAR, made the PIF data available on the POST Web site which was constructed by RAF/NCAR. NSF supported H. Gerber, G. Frick, and S. Malinowski (ATM-0735121, AGS-1020445), D. Khelif (ATM-0734323), and S. Krueger (ATM-0735118). The Office of Naval Research and the Naval Postgraduate School supported in part the deployment of the Twin Otter aircraft.

References

GERBER ET AL.: ENTRAINMENT RATES IN STRATOCUMULUS

VanZanten, M. C., and P. G. Duynkerke (2002), Radiative and evaporative cooling in the entrainment zone of stratocumulus—The role of longwave radiative cooling above cloud top, Boundary-Layer Meteor., 102, 253–280.

